

Contents

Contents
Introduction . 3
Parsing inputs . 4

Prepare a crate . 4
Processing arguments . 6

Interacting with a model . 14
Creating a prompt . 14
Filling the prompt . 21
Interacting with a model . 23

Running a command . 29
Asking for confirmation . 29
Run the command . 32

Testing the agent . 44
Create a symbolic link . 44
Usage example . 45

Power up CLI tools with natural language 2

Introduction

Introduction
The tool we’ll build is an interactive
utility that turns natural‑language
instructions into command‑line
arguments for a specific command.

For example, to undo the last commit in
a Git repository, we can run:

sh

git reset --soft HEAD^

It would be handy to implement a
command that accepts free‑form text as
its argument and derives the necessary
options, for example:

sh

git+ drop the last commit

Let’s think about how we might
implement this. In any case, this is a
terminal program, so it won’t need any
graphical or programmatic interface.

We need to make the executable
universal, so it can run as a replacement
for any other command. We could

achieve this by extracting the argument
list. Since the first argument is the
executable file name, we could easily
understand what command name is
being invoked.

The remaining arguments should
simply be collected into a string and
placed in a prompt that gets sent to the
LLM. The prompt needs to be crafted
so it outputs only the parameters for the
command without extra noise, allowing
us to use the generated output directly
by substituting it into the original
command and executing it.

We’ll also ask for user confirmation — I
wouldn’t blindly execute what the
model generates: actions could turn out
to be destructive, especially if the user
didn’t formulate the request very
precisely.

Power up CLI tools with natural language 3

Parsing inputs Prepare a crate

Parsing inputs
Prepare a crate
Create an empty crate with an applicaB
tion (executable file).

You can do this by running the cargo
new command with the --bin flag,
specifying the name of the application
(in our case, it will be add-plus).

. SH

$ cargo new --bin add-plus

Cargo.toml TOML

1
2
3
4
5

[package]
name = "add-plus"
version = "0.1.0"
edition = "2024"

src/main.rs RUST

1
2

fn main() {
}

Power up CLI tools with natural language 4

Parsing inputs

Rust does not have a very convenient
error type. Therefore, I recommend
adding the anyhow crate, which proB
vides a universal error type.

It also offers a type alias for the Result
type, with the error type from this
crate preBconfigured.

Cargo.toml TOML

6
7

[dependencies]
anyhow = "1.0.99"

src/main.rs RUST

1 use anyhow::Result;

src/main.rs RUST

2
3
4

fn main() -> Result<()> {
 Ok(())
}

Power up CLI tools with natural language 5

Parsing inputs Processing arguments

Processing arguments
Our utility will take and process paraB
meters passed through the command
line, so we need to access these parameB
ters, and we can do this using the env
module from the standard library.

This module contains the args funcB
tion, which returns an iterator over the
command line arguments.

Obtain this iterator and store it in a
variable called args.

src/main.rs RUST

2 use std::env;

src/main.rs RUST

3
4
5
6

fn main() -> Result<()> {
 let mut args = env::args();
 Ok(())
}

Power up CLI tools with natural language 6

Parsing inputs

Since the args structure is an iterator,
we use the next method once to get
the first argument, which is the name
of the executable file in terms of comB
mandBline parameters.

src/main.rs RUST

3
4
5
6
7

fn main() -> Result<()> {
 let mut args = env::args();
 let alias_name = args.next();
 Ok(())
}

Power up CLI tools with natural language 7

Parsing inputs

The return value is an Option,
which you can print using the stanB
dard unwrap() method. However, it’s
more elegant to use the context()
method provided by the Context trait
from the anyhow crate. In this case,
the Option is converted into a Result
that contains an error if the value is not
set.

Can there be a situation where the
executable file name is not in the ar�
guments? The operating system does
not enforce what must be included
in the parameters when running a
command. However, by convention,
at least one argument should always be
present. Still, this does not guarantee
that the argument is the name of the
binary file. Also this argument can be
an empty string. If you plan to reuse
this code in the future or add custom
argument processing, it’s better to
make the algorithm more robust, so it
handles the absence of arguments corB
rectly.

src/main.rs RUST

1 use anyhow::{Context as _, Result};

src/main.rs RUST

3
4
5
6
7
8

fn main() -> Result<()> {
 let mut args = env::args();
 let alias_name = args.next()
 .context("No name of the app provided")?;
 Ok(())
}

Power up CLI tools with natural language 8

Parsing inputs

The executable file name is not just the
name of the file. Technically, it can be
the path to the file along with its name.

To correctly handle file paths, convert
alias_name to the Path type using
the new() method. Then, extract
the file name from the parsed path
by calling the file_name() method,
and save the result in the variable
binary_name.

src/main.rs RUST

2
3
4
5

use std::{
 env,
 path::Path,
};

src/main.rs RUST

6
7
8
9
10
11
12
13

fn main() -> Result<()> {
 let mut args = env::args();
 let alias_name = args.next()
 .context("No name of the app provided")?;
 let binary_name = Path::new(&alias_name)
 .file_name();
 Ok(())
}

Power up CLI tools with natural language 9

Parsing inputs

The file_name() method returns an
Option because the path might be
empty, a root path, or end with a sepaB
rator.

While the provided path to the exeB
cutable file should always contain a file
name if executed correctly, we cannot
fully ensure this. Our utility might
be run programmatically, where comB
mand line parameters can be arbitrary.
Therefore, we will use the context()
method to extract the value or return
an error if the file name is absent.

src/main.rs RUST

6
7
8
9
10
11
12
13
14

fn main() -> Result<()> {
 let mut args = env::args();
 let alias_name = args.next()
 .context("No name of the app provided")?;
 let binary_name = Path::new(&alias_name)
 .file_name()
 .context("Invalid path")?;
 Ok(())
}

Power up CLI tools with natural language 10

Parsing inputs

The returned file name is of type
OsStr, as the operating system may
use different file systems and different
encodings for file names. This means
the returned string is not guaranteed
to be a Unicode string.

However, we can attempt to convert
it using the to_str() method, which
also returns an Option if the file name
cannot be converted to a Unicode
string. If it cannot, we will use the
context() method to return an error.

src/main.rs RUST

6
7
8
9
10
11
12
13
14
15
16

fn main() -> Result<()> {
 let mut args = env::args();
 let alias_name = args.next()
 .context("No name of the app provided")?;
 let binary_name = Path::new(&alias_name)
 .file_name()
 .context("Invalid path")?
 .to_str()
 .context("Invalid UTF-8 in filename")?;
 Ok(())
}

Power up CLI tools with natural language 11

Parsing inputs

By convention, the name of the binary
file should match the name of the
utility for which we are setting paraB
meters, with the only difference being
that a + sign is added to the name. This
indicates that it is an extension or adB
dition to the original command, using
AI to generate parameters.

To remove this plus sign and obtain
the name of the utility for which
we are setting parameters, use the
trim_end_matches() method. Pass
the character that needs to be removed
from the end of the string. Do this
and save the result in the variable
real_name.

src/main.rs RUST

6
7
8
9
10
11
12
13
14
15
16
17

fn main() -> Result<()> {
 let mut args = env::args();
 let alias_name = args.next()
 .context("No name of the app provided")?;
 let binary_name = Path::new(&alias_name)
 .file_name()
 .context("Invalid path")?
 .to_str()
 .context("Invalid UTF-8 in filename")?;
 let real_name = binary_name.trim_end_matches('+');
 Ok(())
}

Power up CLI tools with natural language 12

Parsing inputs

Collect all remaining arguments into a
vector using the collect() method.
Then, combine them into a single
string using the join() method, with
a space (" ") as the separator.

Store the result in a variable called
natural_args. This variable will be a
String containing a natural language
query, which we will pass to the model
in a prompt.

src/main.rs RUST

6
7
8
9
10
11
12
13
14
15
16
17
18
19

fn main() -> Result<()> {
 let mut args = env::args();
 let alias_name = args.next()
 .context("No name of the app provided")?;
 let binary_name = Path::new(&alias_name)
 .file_name()
 .context("Invalid path")?
 .to_str()
 .context("Invalid UTF-8 in filename")?;
 let real_name = binary_name.trim_end_matches('+');
 let natural_args = args.collect::<Vec<_>>()
 .join(" ");
 Ok(())
}

Power up CLI tools with natural language 13

Interacting with a model Creating a prompt

Interacting with a model
Creating a prompt
We have the required input data: the
name of the command, and a query
in natural language. Now we need to
create a prompt for the LLM to transB
form the natural language query into
formal parameters for this command.

Because a prompt is typically substanB
tial text, keep it in a separate file. ConB
veniently, Rust lets us embed strings
at compile time via the include_str!
macro. Create an empty prompt.md
under src (if you end up with many
prompts, consider a top‑level folder).

Add the file to the program by assignB
ing it to a static variable PROMPT.

src/main.rs RUST

6 static PROMPT: &str = include_str!("prompt.md");

Power up CLI tools with natural language 14

Interacting with a model

You’ve probably heard that LLMs
benefit from setup — a prompt that
assigns a role. That framing deterB
mines how the model will behave.
I wouldn’t say formality matters; on
the contrary, the more naturally you
phrase the role, the more useful and
creative the responses tend to be.

We should also state our agent’s role
in the prompt. As you know, we
want to convert natural language into
formal command‑line parameters for a
specific command.

Note that we are using a {COMMAND}
placeholder for the command. We’ll
substitute it later with the command
name you extracted from the first
command‑line argument (the invoked
executable).

src/prompt.md MARKDOWN

1 You are given a natural language instruction from a user that
describes how they want to use the command `{COMMAND}`.

Power up CLI tools with natural language 15

Interacting with a model

With the role defined, we should
clearly state the task — what we expect
the model to do. Our agent’s job is to
convert the instruction into a list of
valid parameters.

This overlaps with the role, but there’s
a difference: the role tells the agent
who it is, while the task tells it what to
do.

src/prompt.md MARKDOWN

2 Your task is to convert this natural language instruction into a
valid set of parameters for the command.

Power up CLI tools with natural language 16

Interacting with a model

We expect the result in a specific
format. It’s important to be explicit
here: ideally, it’s just a single line of
parameters that we can pass to the real
command.

Also the model will behave more reliB
ably if we show a concrete example of
the desired output.

From the example it’s clear that paraB
meters (named and positional), flags,
and even subcommands may appear.
It also makes explicit that the comB
mand itself is omitted — we only want
the parameters.

src/prompt.md MARKDOWN

3

4
5
6

Only output the parameters in a single line for the command in the
terminal.

Output example:
"subcommand -f --flag --parameter=value arg1 arg2"

Power up CLI tools with natural language 17

Interacting with a model

There’s a nuance: we’ve defined what
the model should do, but not what
it must avoid. A chatty model might
explain which parameters it selected —
still a single line, but with extra text.

To keep the output clean, add a conB
straint and tell the model to output
only the parameters and nothing else.

The example already nudges the
model toward returning only parameB
ters; the constraint ensures it won’t
improvise — for instance, by adding
shell comments.

src/prompt.md MARKDOWN

7 Do not include explanations, extra text, or the command name
itself.

Power up CLI tools with natural language 18

Interacting with a model

Sometimes the instruction won’t be
specific enough. For example, a comB
mand may require mandatory parameB
ters the user didn’t include. In that
case, prefer sensible defaults: omit
those parameters rather than inventB
ing values — i.e., avoid adding anyB
thing extra.

That effectively forbids fabricating
data. Requests can also contain conB
tradictions; in those cases, ask the
model to pick a single, reasonable inB
terpretation.

These hints make the agent more
proactive: its goal is to help, and with
them the model will choose a minimal,
workable solution.

src/prompt.md MARKDOWN

8

9
10

If some parameters are missing, omit them rather than inventing
values.

If the user input is ambiguous, choose the most reasonable
interpretation.

Power up CLI tools with natural language 19

Interacting with a model

We’ve set the model’s role, shown an
example, and added constraints. Now
we can specify the input — the data
the model receives.

Because the user provides the reB
quest at runtime, we don’t know it
in advance. We’ll use the {INPUT}
placeholder and later substitute the
natural‑language description we conB
structed by joining the remaining arB
guments into a sentence.

src/prompt.md MARKDOWN

11
12

Input:
"{INPUT}"

Power up CLI tools with natural language 20

Interacting with a model Filling the prompt

Filling the prompt
Now we need to fill in the template for
the prompt, which we have included
in the static variable PROMPT.

Our template has 2 placeholders that
we need to replace. The first one is
{COMMAND}, where we need to insert
the name of the command for which
we are selecting parameters. To do this,
we can use the replace() method,
providing the command placeholder
and the utility name that was previB
ously stored in the variable real_name
as parameters.

src/main.rs RUST

7
19
20
21
22

fn main() -> Result<()> {
 let prompt = PROMPT
 .replace("{COMMAND}", real_name);
 Ok(())
}

Power up CLI tools with natural language 21

Interacting with a model

The second placeholder we need
to replace is {INPUT}. We have
already constructed a natural lanB
guage query from the provided arB
guments and stored it in the variB
able natural_args. Use it in the
replace() method to substitute the
placeholder with the input parameB
ters.

src/main.rs RUST

7
19
20
21
22
23

fn main() -> Result<()> {
 let prompt = PROMPT
 .replace("{COMMAND}", real_name)
 .replace("{INPUT}", &natural_args);
 Ok(())
}

Power up CLI tools with natural language 22

Interacting with a model Interacting with a model

Interacting with a model
To interact with models, we need a
crate to avoid implementing the API
of an LLM directly. The Rig project
can assist with this, especially through
their rig-core crate. It provides a
set of functions necessary for interB
acting with models. Add it to your
Cargo.toml file.

Cargo.toml TOML

6
7
8

[dependencies]
anyhow = "1.0.99"
rig-core = "0.18.2"

Power up CLI tools with natural language 23

Interacting with a model

The rig-core crate implements difB
ferent APIs, and in our case, we will
use OpenAI. Import this module into
your project from the providers subB
module.

In this module you can find a strucB
ture called Client. We can create an
instance of this structure using the
from_env() method, which is part
of the ProviderClient trait. This
method allows us to create a client
instance based on environment variB
ables.

src/main.rs RUST

6
7
8
9

use rig::{
 client::ProviderClient,
 providers::openai,
};

src/main.rs RUST

11
26
27
28

fn main() -> Result<()> {
 let client = openai::Client::from_env();
 Ok(())
}

Power up CLI tools with natural language 24

Interacting with a model

The client is set up using only the
API access token. To use a specific
model, utilize the agent builder by
calling the agent() method from the
CompletionClient trait.

Provide the model’s name or alias as
a parameter. If no extra configuration
is needed, simply call the build()
method.

src/main.rs RUST

6
7
8
9

use rig::{
 client::{CompletionClient, ProviderClient},
 providers::openai,
};

src/main.rs RUST

11
26
27
28
29

fn main() -> Result<()> {
 let client = openai::Client::from_env();
 let agent = client.agent("gpt-5").build();
 Ok(())
}

Power up CLI tools with natural language 25

Interacting with a model

In rig terminology, a model you can
interact with is called an Agent. This
type has a method prompt(), which
allows you to send a chat completion
request to the model. We already
have a prepared request stored in the
variable prompt, so simply pass this
variable as a parameter to the method.

However, the prompt() method is
asynchronous, so we need an asynB
chronous runtime. In other words, we
need to use the await operator to exeB
cute it and get the result.

src/main.rs RUST

6
7
8
9
10

use rig::{
 client::{CompletionClient, ProviderClient},
 completion::Prompt,
 providers::openai,
};

src/main.rs RUST

12
27
28
29
30
31

fn main() -> Result<()> {
 let client = openai::Client::from_env();
 let agent = client.agent("gpt-5").build();
 let real_args = agent.prompt(prompt);
 Ok(())
}

Power up CLI tools with natural language 26

Interacting with a model

The most popular and convenient
asynchronous runtime in Rust is
Tokio. Add the tokio crate to the
dependencies list in your Cargo.toml
file and enable the full feature. This
will give you access to the multiB
threaded runtime and a special macro
for making the main() function asynB
chronous.

In your main.rs file, modify the
main() function to make it asynB
chronous. Use the #[tokio::main]
attribute from the tokio crate directly
on your main function.

Cargo.toml TOML

6
7
8
9

[dependencies]
anyhow = "1.0.99"
rig-core = "0.18.2"
tokio = { version = "1.47.1", features = ["full"] }

src/main.rs RUST

12
13
31
32

#[tokio::main]
async fn main() -> Result<()> {
 Ok(())
}

Power up CLI tools with natural language 27

Interacting with a model

Now we can use the await operator to
get the result of the request. It returns
a result, so we use the ? operator to
handle any errors if something goes
wrong when calling the method, and
halt program execution.

src/main.rs RUST

12
13
28
29
30
31
32

#[tokio::main]
async fn main() -> Result<()> {
 let client = openai::Client::from_env();
 let agent = client.agent("gpt-5").build();
 let real_args = agent.prompt(prompt).await?;
 Ok(())
}

Power up CLI tools with natural language 28

Running a command Asking for confirmation

Running a command
Asking for confirmation
Now we have the utility name and
its actual arguments stored in the
real_name and real_args variables.
Let’s combine them into a single string
using the format! macro to ask the
user for confirmation if they agree to
execute the resulting command and
parameters.

src/main.rs RUST

12
13
31
32
33

#[tokio::main]
async fn main() -> Result<()> {
 let prompt = format!("{real_name} {real_args}");
 Ok(())
}

Power up CLI tools with natural language 29

Running a command

The most elegant way to request user
confirmation in the terminal is by usB
ing the dialoguer crate. It provides
a Confirm structure, which you can
create by calling the new method.

To interact with the user, use the
interact() method. This method is
called without any parameters and reB
turns a Result. Make sure to handle
the result with the ? operator. Note
that this method is synchronous beB
cause terminal interactions cannot be
done asynchronously.

The method returns a bool value. If
the user confirms the command, it
returns true, and if they cancel, it reB
turns false. Simply store this boolean
value in a variable named run.

Cargo.toml TOML

6
7
8
9
10

[dependencies]
anyhow = "1.0.99"
dialoguer = "0.12.0"
rig-core = "0.18.2"
tokio = { version = "1.47.1", features = ["full"] }

src/main.rs RUST

2 use dialoguer::Confirm;

src/main.rs RUST

13
14
32
33
34
35
36

#[tokio::main]
async fn main() -> Result<()> {
 let prompt = format!("{real_name} {real_args}");
 let run = Confirm::new()
 .interact()?;
 Ok(())
}

Power up CLI tools with natural language 30

Running a command

You can specify a message to display
when asking the user for confirmation
using the with_prompt() method,
which takes the message as a parameB
ter. You can use a variable named
prompt for this purpose.

The report() method allows you to
turn off the reporting of the chosen
option. We will do this because we disB
play the prompt as a command with
arguments, and extra output would
make it cluttered.

src/main.rs RUST

13
14
32
33
34
35
36
37
38

#[tokio::main]
async fn main() -> Result<()> {
 let prompt = format!("{real_name} {real_args}");
 let run = Confirm::new()
 .with_prompt(prompt)
 .report(false)
 .interact()?;
 Ok(())
}

Power up CLI tools with natural language 31

Running a command Run the command

Run the command
We now have a variable run that indiB
cates we need to execute the received
command.

Add an if block with this variable
that will execute only if the user has
confirmed the execution.

src/main.rs RUST

13
14
37
38
39
40

#[tokio::main]
async fn main() -> Result<()> {
 if run {
 }
 Ok(())
}

Power up CLI tools with natural language 32

Running a command

The tokio crate provides the process
module, which allows you to run
various commands. It contains the
Command struct, responsible for buildB
ing a command to execute and interB
acting with it afterward.

Import this type and use the new()
method to create the command
you want to run. Pass the variable
real_name as its name and store the
result in a mutable variable cmd, since
we will still configure arguments and
inputBoutput for it.

src/main.rs RUST

12 use tokio::process::Command;

src/main.rs RUST

14
15
38
39
40
41
42

#[tokio::main]
async fn main() -> Result<()> {
 if run {
 let mut cmd = Command::new(real_name);
 }
 Ok(())
}

Power up CLI tools with natural language 33

Running a command

In the past, we combined arguments
into a single sentence to create a natB
ural language query. Now, we need to
do the opposite with the real_args
variable returned by the model. This
String contains a list of arguments
that we need to pass to the command.

To split the string into arguments,
we can use the string method
split_whitespace(), and then colB
lect everything into a Vec of string
references, where each element repreB
sents one argument.

However, this method of splitting the
string has a small drawback. If quotes
are used and the model provides comB
plex parameters with multiple words,
this case will not be handled correctly.
As an additional exercise, you can
think about and try to improve this
later.

src/main.rs RUST

14
15
38
39
40
41
42
43
44
45

#[tokio::main]
async fn main() -> Result<()> {
 if run {
 let mut cmd = Command::new(real_name);
 let args_list: Vec<&str> = real_args
 .split_whitespace()
 .collect();
 }
 Ok(())
}

Power up CLI tools with natural language 34

Running a command

Now we can add these arguments
to the command using the args()
method. You need to provide a referB
ence to the list of arguments as a
parameter. This list must be iterable,
and the method will automatically go
through all the arguments and add
them to the command.

src/main.rs RUST

14
15
38
39
40
41
42
43
44
45
46

#[tokio::main]
async fn main() -> Result<()> {
 if run {
 let mut cmd = Command::new(real_name);
 let args_list: Vec<&str> = real_args
 .split_whitespace()
 .collect();
 cmd.args(&args_list);
 }
 Ok(())
}

Power up CLI tools with natural language 35

Running a command

To redirect the input and output
of the executed command to the I/
O used by our executable file at runB
time, we use the methods stdin(),
stdout(), and stderr() of the
Command struct.

You need to pass a handle of the stream
that will be used for reading or writing
data. In our case, we will simply inB
herit our standard input and output.
To do this, import the Stdio type
from the process module and call the
inherit() method, which will return
a handle to the current command in
the current execution context.

src/main.rs RUST

3
4
5
6
7

use std::{
 env,
 path::Path,
 process::Stdio,
};

src/main.rs RUST

15
16
39
40
41
42
43
44
45
46
47
48
49
50

#[tokio::main]
async fn main() -> Result<()> {
 if run {
 let mut cmd = Command::new(real_name);
 let args_list: Vec<&str> = real_args
 .split_whitespace()
 .collect();
 cmd.args(&args_list);
 cmd.stdin(Stdio::inherit());
 cmd.stdout(Stdio::inherit());
 cmd.stderr(Stdio::inherit());
 }
 Ok(())
}

Power up CLI tools with natural language 36

Running a command

Everything is now ready to run the
command. Since we don’t need to capB
ture its output and only want to show
it to the user, we can simply execute
the command and wait for it to finish.
We can use the status() method for
this. It requires no parameters and
returns a Future. We use the await
operator to get the result.

The result we receive is the command’s
execution result. It includes the exit
code if the command succeeds, or an
error if the command fails. Note that
this error is not about the command’s
execution itself. The exit code already
indicates if the command was sucB
cessful or not. The result from the
status() method tells us whether the
command could not be started or if
the status code could not be retrieved.
This is separate from the command’s
execution result and is related to the
attempt to run it.

src/main.rs RUST

15
16
39
40
41
42
43
44
45
46
47
48
49
50
51

#[tokio::main]
async fn main() -> Result<()> {
 if run {
 let mut cmd = Command::new(real_name);
 let args_list: Vec<&str> = real_args
 .split_whitespace()
 .collect();
 cmd.args(&args_list);
 cmd.stdin(Stdio::inherit());
 cmd.stdout(Stdio::inherit());
 cmd.stderr(Stdio::inherit());
 let status = cmd.status().await?;
 }
 Ok(())
}

Power up CLI tools with natural language 37

Running a command

The status() method returns an inB
stance of the ExitStatus type. This
instance may not always contain an
exit code, but we can obtain it using
the code() method, which returns an
Option.

We expect to always get an exit code.
Therefore, we will use the context()
method to turn an empty Option into
an error, indicating that the exit code
was not obtained.

src/main.rs RUST

15
16
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

#[tokio::main]
async fn main() -> Result<()> {
 if run {
 let mut cmd = Command::new(real_name);
 let args_list: Vec<&str> = real_args
 .split_whitespace()
 .collect();
 cmd.args(&args_list);
 cmd.stdin(Stdio::inherit());
 cmd.stdout(Stdio::inherit());
 cmd.stderr(Stdio::inherit());
 let status = cmd.status().await?;
 let code = status
 .code()
 .context("Cannot get the exit code")?;
 }
 Ok(())
}

Power up CLI tools with natural language 38

Running a command

Let’s improve our command so that it
also returns an exit code. To do this,
we need to import the ExitCode type
from the standard process module
and return it as the result from the
main() function.

We should also return a success code at
the end of the command. There is an
associated constant SUCCESS with the
ExitCode type for this purpose.

src/main.rs RUST

3
4
5
6
7

use std::{
 env,
 path::Path,
 process::{ExitCode, Stdio},
};

src/main.rs RUST

15
16
53
54

#[tokio::main]
async fn main() -> Result<ExitCode> {
 Ok(ExitCode::SUCCESS)
}

Power up CLI tools with natural language 39

Running a command

Now we need to consider how to obB
tain the result code from command
execution. In other words, how do
we convert the ExitStatus into an
ExitCode?

We have already converted the
ExitStatus to a code of type i32.
However, an exit code can only be
created from a u8 type. Therefore, use
the try_into method to try convertB
ing the returned code into the desired
type.

src/main.rs RUST

15
16
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

#[tokio::main]
async fn main() -> Result<ExitCode> {
 if run {
 let mut cmd = Command::new(real_name);
 let args_list: Vec<&str> = real_args
 .split_whitespace()
 .collect();
 cmd.args(&args_list);
 cmd.stdin(Stdio::inherit());
 cmd.stdout(Stdio::inherit());
 cmd.stderr(Stdio::inherit());
 let status = cmd.status().await?;
 let code: u8 = status
 .code()
 .context("Cannot get the exit code")?
 .try_into()?;
 }
 Ok(ExitCode::SUCCESS)
}

Power up CLI tools with natural language 40

Running a command

Now we can construct the exit code
and return it as the result of the entire
program using return. src/main.rs RUST

15
16
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

#[tokio::main]
async fn main() -> Result<ExitCode> {
 if run {
 let mut cmd = Command::new(real_name);
 let args_list: Vec<&str> = real_args
 .split_whitespace()
 .collect();
 cmd.args(&args_list);
 cmd.stdin(Stdio::inherit());
 cmd.stdout(Stdio::inherit());
 cmd.stderr(Stdio::inherit());
 let status = cmd.status().await?;
 let code: u8 = status
 .code()
 .context("Cannot get the exit code")?
 .try_into()?;
 return Ok(ExitCode::from(code));
 }
 Ok(ExitCode::SUCCESS)
}

Power up CLI tools with natural language 41

Running a command

A more elegant solution would be to
return the result of the command exeB
cution if it runs. Otherwise, return a
success exit code.

To do this, add an else branch to our
if statement, and in this alternative
branch, simply return a success result.
Remove the previous result that was
returned at the end of the main()
function.

src/main.rs RUST

15
16
57
58

#[tokio::main]
async fn main() -> Result<ExitCode> {

}

src/main.rs RUST

15
16
39
54
56
57
58

#[tokio::main]
async fn main() -> Result<ExitCode> {
 if run {
 } else {
 }

}

src/main.rs RUST

15
16
39
54
55
56
57
58

#[tokio::main]
async fn main() -> Result<ExitCode> {
 if run {
 } else {
 Ok(ExitCode::SUCCESS)
 }

}

Power up CLI tools with natural language 42

Running a command

Since the main function now ends
with an if block that has two branches,
the primary and the alternative, the
return statement is no longer needed.
You can remove it.

src/main.rs RUST

15
16
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
56
57

#[tokio::main]
async fn main() -> Result<ExitCode> {
 if run {
 let mut cmd = Command::new(real_name);
 let args_list: Vec<&str> = real_args
 .split_whitespace()
 .collect();
 cmd.args(&args_list);
 cmd.stdin(Stdio::inherit());
 cmd.stdout(Stdio::inherit());
 cmd.stderr(Stdio::inherit());
 let status = cmd.status().await?;
 let code: u8 = status
 .code()
 .context("Cannot get the exit code")?
 .try_into()?;
 Ok(ExitCode::from(code))
 } else {
 }
}

Power up CLI tools with natural language 43

Testing the agent Create a symbolic link

Testing the agent
Create a symbolic link
Our team is fully prepared for the
challenge. Build the release version of
the application using the build comB
mand with the --release flag.

Then, copy the compiled binary to
a directory such as bin, which you
can access from your terminal. For
example, I use a directory named
~/.local/bin.

Also, create an alias in this folder, and
name it after the command you want
to run. This alias will help convert natB
ural language arguments into formal
ones. In my case, the command is git,
so I name the alias git+.

. SH

$ cargo build release

. SH

$ cp target/release/add-plus ~/.local/bin/add-plus

. SH

$ ln -s ~/.local/bin/add-plus ~/.local/bin/git+

Power up CLI tools with natural language 44

Testing the agent Usage example

Usage example
To create the OpenAI client, we
used environment variables. Before
running the command, you need
to set the environment variable
OPENAI_API_KEY with your OpenAI
API key.

Once this is done, you can execute the
command. In my case, I run it using
the alias git+, specifying that it should
show a compact list of commits.

Remember to run this command from
a folder with a real git repository. As
a result, you’ll get a prompt to try
running the git command with the
necessary parameters to see this list,
like:

sh

git log --oneline

It’s convenient and effective.

. SH

$ export OPENAI_API_KEY="<your key>"

. SH

$ git+ show a compact list of commits

Power up CLI tools with natural language 45

	Introduction
	Parsing inputs
	Prepare a crate
	Processing arguments

	Interacting with a model
	Creating a prompt
	Filling the prompt
	Interacting with a model

	Running a command
	Asking for confirmation
	Run the command

	Testing the agent
	Create a symbolic link
	Usage example

