PRACTICAL LEARNING Step-By~Step Guide @

N .

i

Power up CLI tools -
with natural language

Build a universal utility that transforms natural
language tasks into precise command-line
arguments.

RUST KNOWLEDGE.DEV

CONTENTS

Contents

Introduction
Parsing inputsoooiii
Prepare a Crateuuuuiiiiiniee it
Processing argumentsoouiuuiuiiiiiit ettt
Interacting withamodeloo
Creating @ PromPe.....ouuuuiii et
Filling the prompt..........oo
Interacting withamodelooo
Runningacommand ...
Asking for confirmationo oo
Runthecommand.............o

Createasymboliclink ...
Usage exampleoooiiii

Power up CLI tools with natural language

Testing the agent.o o o i e

INTRODUCTION

Introduction

The tool we’ll build is an interactive
utility that turns natural-language
instructions into command-line
arguments for a specific command.

For example, to undo the last commit in
a Git repository, we can run:

sh
git reset --soft HEAD™

It would be handy to implement a
command that accepts free-form text as
its argument and derives the necessary
options, for example:

sh

git+ drop the last commit

Let’s think about how we might
implement this. In any case, this is a
terminal program, so it won’t need any
graphical or programmatic interface.

We need to make the executable
universal, so it can run as a replacement
for any other command. We could

Power up CLI tools with natural language

achieve this by extracting the argument
list. Since the first argument is the
executable file name, we could easily
understand what command name is

being invoked.

The remaining arguments should
simply be collected into a string and
placed in a prompt that gets sent to the
LLM. The prompt needs to be crafted
so it outputs only the parameters for the
command without extra noise, allowing
us to use the generated output directly
by substituting it into the original
command and executing it.

We’ll also ask for user confirmation — I
wouldn’t blindly execute what the
model generates: actions could turn out
to be destructive, especially if the user
didn’t formulate the request very
precisely.

PARSING INPUTS

Parsing inputs

Prepare a crate
Create an empty crate with an applica-
tion (executable file).

You can do this by running the cargo
new command with the --bin flag,
specifying the name of the application
(in our case, it will be add-plus).

Power up CLI tools with natural language

cargo new --bin add-plus

Cargo. toml
[package]
name = "add-plus"
version = "0.1.0"

edition = "2024"

src/main.rs

fn main() {

}

Prepare a crate

SH

TOML

RUST

PARSING INPUTS

Rust does not have a very convenient
error type. Therefore, I recommend
adding the anyhow crate, which pro- Cargo. toml TOML

vides a universal error type. [dependencies]
anyhow = "1.0.99"
It also offers a type alias for the Result

type, with the error type from this
crate pre-conﬁgured. src/main.rs RUST

use anyhow: :Result;

src/main.rs RUST

fn main() -> Result<()> {
Ok(())

Power up CLI tools with natural language

PARSING INPUTS PVO[L’SJlb}’lg argummtx

Processing arguments

Our utility will take and process para-

src/main.rs RUST
meters passed through the command /mai

line, so we need to access these parame- use std::env;
ters, and we can do this using the env

module from the standard library.

src/main.rs RUST
This module contains the args func- fn main() -> Result<()> {
tion, which returns an iterator over the let mut args = env::args();
command line arguments. Ok (())
}

Obtain this iterator and store it in a
variable called args.

Power up CLI tools with natural language 6

PARSING INPUTS

Since the args structure is an iterator,
we use the next method once to get
the first argument, which is the name
of the executable file in terms of com-
mand-line parameters.

Power up CLI tools with natural language

src/main.rs

fn main() -> Result<()> {
let mut args = env::args();
let alias name = args.next();
Ok(())

RUST

PARSING INPUTS

The return value is an Option,
which you can print using the stan-
dard unwrap () method. However, it’s
more elegant to use the context()

method provided by the Context trait
from the anyhow crate. In this case,
the Option is converted into a Result

that contains an error if the value is not
set.

Can there be a situation where the
executable file name is not in the ar-
guments? The operating system does
not enforce what must be included
in the parameters when running a
command. However, by convention,
atleast one argument should always be
present. Still, this does not guarantee
that the argument is the name of the
binary file. Also this argument can be
an empty string. If you plan to reuse
this code in the future or add custom
argument processing, it’s better to
make the algorithm more robust, so it
handles the absence of arguments cor-
rectly.

Power up CLI tools with natural language

src/main.rs

use anyhow::{Context as , Result};

src/main.rs

fn main() -> Result<()> {
let mut args = env::args();
let alias name = args.next()
.context("No name of the app provided")?;

0k(())

RUST

RUST

PARSING INPUTS

The executable file name is not just the
name of the file. Technically, it can be

the path to the file along with its name. src/main.rs RUST}
use std::{

To correctly handle file paths, convert .

alias_name to the Path type using path::Path,

the new() method. Then, extract };

the file name from the parsed path

by calling the file name() method,

and save the result in the variable src/main.rs RUST

binary name. fn main() -> Result<()> {

let mut args = env::args();
let alias_name = args.next()
.context("No name of the app provided")?;
let binary name = Path::new(&alias name)
.file name();

0k(())

Power up CLI tools with natural language

PARSING INPUTS

The file name() method returns an
Option because the path might be
empty, a root path, or end with a sepa-
rator.

While the provided path to the exe-
cutable file should always contain a file
name if executed correctly, we cannot
tully ensure this. Our utility might
be run programmatically, where com-
mand line parameters can be arbitrary.
Therefore, we will use the context ()

method to extract the value or return
an error if the file name is absent.

Power up CLI tools with natural language

src/main.rs

fn main() -> Result<()> {

let mut args = env::args();

let alias_name = args.next()
.context("No name of the app provided")?;

let binary name = Path::new(&alias name)
.file name()
.context("Invalid path")?;

Ok(())

RUST

10

PARSING INPUTS

The returned file name is of type
0sStr, as the operating system may
use different file systems and different
encodings for file names. This means
the returned string is not guaranteed
to be a Unicode string.

However, we can attempt to convert
it using the to_str() method, which
also returns an Option if the file name
cannot be converted to a Unicode
string. If it cannot, we will use the

context () method to return an error.

Power up CLI tools with natural language

src/main.rs RUST

fn main() -> Result<()> {
let mut args = env::args();
let alias_name = args.next()
.context("No name of the app provided")?;
let binary name = Path::new(&alias name)
.file name()
.context("Invalid path")?
.to str()
.context("Invalid UTF-8 in filename")?;
Ok(())

11

PARSING INPUTS

By convention, the name of the binary
file should match the name of the
utility for which we are setting para-
meters, with the only difference being
thata +sign is added to the name. This
indicates that it is an extension or ad-
dition to the original command, using
Al to generate parameters.

To remove this plus sign and obtain
the name of the utility for which
we are setting parameters, use the
trim end matches() method. Pass
the character that needs to be removed
from the end of the string. Do this
and save the result in the variable
real name.

Power up CLI tools with natural language

src/main.rs RUST

fn main() -> Result<()> {
let mut args = env::args();
let alias_name = args.next()
.context("No name of the app provided")?;
let binary name = Path::new(&alias name)
.file name()
.context("Invalid path")?
.to str()
.context("Invalid UTF-8 in filename")?;
let real _name = binary name.trim end matches('+");
Ok(())

12

PARSING INPUTS

Collect all remaining arguments into a

vector using the collect() method.

Then, combine them into a single src/main.rs RUST

string using the join () method, with fn main() -> Result<()> {

let mut args = env::args();

let alias_name = args.next()

Store the result in a variable called .context("No name of the app provided")?;

natural args. This variable will be a let binary_name = Path::new(&alias_name)

.file name()

.context("Invalid path")?

) .to str()

In a prompt. .context("Invalid UTF-8 in filename")?;
let real name = binary name.trim end matches('+"');
let natural args = args.collect::<Vec< >>()

.join(" ");
Ok(())

aspace (" ") as the separator

String containing a natural language
query, which we will pass to the model

Power up CLI tools with natural language

INTERACTING WITH A MODEL Creatz’ngaprompt

Interacting with a model

Creating a prompt src/main. rs RUST
We have the required input data: the static PROMPT: &str = include str!("prompt.md");

name of the command, and a query

in natural language. Now we need to

create a prompt for the LLM to trans-

form the natural language query into

formal parameters for this command.

Because a prompt is typically substan-
tial text, keep it in a separate file. Con-
veniently, Rust lets us embed strings
atcompile time via the include str!

macro. Create an empty prompt.md
under src (if you end up with many
prompts, consider a top-level folder).

Add the file to the program by assign-
ing it to a static variable PROMPT.

Power up CLI tools with natural language 14

INTERACTING WITH A MODEL

You’ve probably heard that LLMs
benefit from setup — a prompt that
assigns a role. That framing deter-
mines how the model will behave.
I wouldn’t say formality matters; on
the contrary, the more naturally you
phrase the role, the more useful and
creative the responses tend to be.

We should also state our agent’s role
in the prompt. As you know, we
want to convert natural language into
formal command-line parameters fora
specific command.

Note that we are using a {COMMAND}
placeholder for the command. We'll
substitute it later with the command
name you extracted from the first
command-line argument (the invoked

executable).

Power up CLI tools with natural language

src/prompt.md MARKDOWN

You are given a natural language instruction from a user that
describes how they want to use the command " {COMMAND} .

15

INTERACTING WITH A MODEL

With the role defined, we should
clearly state the task — what we expect
the model to do. Our agent’s job is to
convert the instruction into a list of
valid parameters.

This overlaps with the role, but there’s
a difference: the role tells the agent
who it is, while the task tells it what to
do.

Power up CLI tools with natural language

src/prompt.md MARKDOWN

Your task is to convert this natural language instruction into a
valid set of parameters for the command.

16

INTERACTING WITH A MODEL

We expect the result in a specific
format. It’s important to be explicit
here: ideally, it’s just a single line of
parameters that we can pass to the real
command.

Also the model will behave more reli-
ably if we show a concrete example of
the desired output.

From the example it’s clear that para-
meters (named and positional), flags,
and even subcommands may appear.
It also makes explicit that the com-
mand itself is omitted — we only want
the parameters.

Power up CLI tools with natural language

src/prompt.md MARKDOWN

Only output the parameters in a single line for the command in the
terminal.

Output example:
"subcommand -f --flag --parameter=value argl arg2"

17

INTERACTING WITH A MODEL

There’s a nuance: we’ve defined what
the model should do, but not what
it must avoid. A chatty model might
explain which parameters it selected —
still a single line, but with extra text.

To keep the output clean, add a con-
straint and tell the model to output
only the parameters and nothing else.

The example already nudges the
model toward returning only parame-
ters; the constraint ensures it won’t
improvise — for instance, by adding
shell comments.

Power up CLI tools with natural language

src/prompt.md

Do not include explanations, extra text, or the command name
itself.

MARKDOWN

18

INTERACTING WITH A MODEL

Sometimes the instruction won’t be
specific enough. For example, a com-
mand may require mandatory parame-
ters the user didn’t include. In that
case, prefer sensible defaults: omit
those parameters rather than invent-
ing values — ie., avoid adding any-
thing extra.

That effectively forbids fabricating
data. Requests can also contain con-
tradictions; in those cases, ask the
model to pick a single, reasonable in-
terpretation.

These hints make the agent more
proactive: its goal is to help, and with
them the model will choose a minimal,
workable solution.

Power up CLI tools with natural language

src/prompt.md MARKDOWN

If some parameters are missing, omit them rather than inventing
values.

If the user input is ambiguous, choose the most reasonable
interpretation.

19

INTERACTING WITH A MODEL

We’ve set the model’s role, shown an
example, and added constraints. Now
we can specify the input — the data
the model receives.

Because the user provides the re-
quest at runtime, we don’t know it
in advance. We’ll use the {INPUT}
placeholder and later substitute the
natural-language description we con-
structed by joining the remaining ar-
guments into a sentence.

Power up CLI tools with natural language

src/prompt.md

Input:
"{INPUT}"

MARKDOWN

20

INTERACTING WITH A MODEL

Filling the prompt

Now we need to fill in the template for
the prompt, which we have included
in the static variable PROMPT.

Our template has 2 placeholders that
we need to replace. The first one is
{COMMAND}, where we need to insert
the name of the command for which
we are selecting parameters. To do this,
we can use the replace() method,
providing the command placeholder
and the utility name that was previ-
ously stored in the variable real name
as parameters.

Power up CLI tools with natural language

src/main.rs

fn main() -> Result<()> {
let prompt = PROMPT

.replace("{COMMAND}", real name);

Ok(())

Filling the prompt

RUST

21

INTERACTING WITH A MODEL

The second placeholder we need
to replace is {INPUT}. We have
already constructed a natural lan-
guage query from the provided ar-
guments and stored it in the vari-
able natural args. Use it in the
replace() method to substitute the
placeholder with the input parame-
ters.

Power up CLI tools with natural language

src/main.rs

fn main() -> Result<()> {
let prompt = PROMPT
.replace("{COMMAND}", real name)
.replace("{INPUT}", &natural args);
0k(())

RUST

22

INTERACTING WITH A MODEL [}’ltﬁ’}"d[l’l.ﬂg with a model

Interacting with a model
To interact with models, we need a
crate to avoid implementing the API (TRl Tom

of an LLM directly. The Rig project [dependencies]
anyhow = "1.0.99"

can assist with this, especially through rig-core = "0.18.2"

their rig-core crate. It provides a
set of functions necessary for inter-
acting with models. Add it to your
Cargo.toml file.

Power up CLI tools with natural language 23

INTERACTING WITH A MODEL

The rig-core crate implements dif-
ferent APIs, and in our case, we will

use OpenAl Import this module into src/main.rs RUST
your project from the providers sub- use rig::{
module. client::ProviderClient,
providers::openai,
In this module you can find a struc- };

ture called Client. We can create an
instance of this structure using the
from_env() method, which is part src/main.rs RUST

of the ProviderClient trait. This fn main() -> Result<()> {
let client = openai::Client::from env();
0k(())

method allows us to create a client
instance based on environment vari-

ables.

Power up CLI tools with natural language

INTERACTING WITH A MODEL

The client is set up using only the
API access token. To use a specific
model, utilize the agent builder by
calling the agent () method from the
CompletionClient trait.

Provide the model’s name or alias as
a parameter. If no extra configuration
is needed, simply call the build()
method.

Power up CLI tools with natural language

src/main.rs
use rig::{
client::{CompletionClient, ProviderClient},
providers::openai,

1

src/main.rs
fn main() -> Result<()> {
let client = openai::Client::from env();
let agent = client.agent("gpt-5").build();
Ok(())

RUST

RUST

25

INTERACTING WITH A MODEL

In rig terminology, a model you can
interact with is called an Agent. This
type has a method prompt (), which
allows you to send a chat completion
request to the model. We already
have a prepared request stored in the
variable prompt, so simply pass this
variable as a parameter to the method.

However, the prompt() method is
asynchronous, so we need an asyn-
chronous runtime. In other words, we
need to use the await operator to exe-
cute it and get the result.

Power up CLI tools with natural language

src/main.rs
use rig::{
client::{CompletionClient, ProviderClient},
completion: :Prompt,
providers::openai,

src/main.rs

fn main() -> Result<()> {
let client = openai::Client::from env();
let agent = client.agent("gpt-5").build();
let real args = agent.prompt(prompt);
Ok(())

RUST

RUST

26

INTERACTING WITH A MODEL

The most popular and convenient
asynchronous runtime in Rust is
Tokio. Add the tokio crate to the
dependencies list in your Cargo. toml
file and enable the full feature. This
will give you access to the multi-
threaded runtime and a special macro
for making the main () function asyn-
chronous.

In your main.rs file, modify the
main() function to make it asyn-
chronous. Use the #[tokio::main]
attribute from the tokio crate directly
on your main function.

Power up CLI tools with natural language

Cargo. toml

[dependencies]
anyhow = "1.0.99"
rig-core = "0.18.2"

tokio = { version = "1.47.1", features = ["full"] }

src/main.rs

#[tokio::main]
async fn main() -> Result<()> {
Ok(())

TOML

RUST

27

INTERACTING WITH A MODEL

Now we can use the await operator to
get the result of the request. It returns
a result, so we use the ? operator to
handle any errors if something goes
wrong when calling the method, and
halt program execution.

Power up CLI tools with natural language

src/main.rs
#[tokio: :main]
async fn main() -> Result<()> {
let client = openai::Client::from env();
let agent = client.agent("gpt-5").build();
let real args = agent.prompt(prompt).await?;
0k(())

RUST

28

RUNNING A COMMAND Asking for confirmation

Running a command

Asking for confirmation src/main.rs RUST
Now we have the utility name and #[tokio: :main]
async fn main() -> Result<()> {

let prompt = format!("{real name} {real args}");

0k(())

its actual arguments stored in the
real name and real args variables.
Let’s combine them into a single string }
using the format! macro to ask the
user for confirmation if they agree to
execute the resulting command and

parameters.

Power up CLI tools with natural language 29

RUNNING A COMMAND

The most elegant way to request user
confirmation in the terminal is by us-
ing the dialoguer crate. It provides
a Confirm structure, which you can
create by calling the new method.

To interact with the user, use the
interact () method. This method is
called without any parameters and re-
turns a Result. Make sure to handle
the result with the ? operator. Note
that this method is synchronous be-
cause terminal interactions cannot be
done asynchronously.

The method returns a bool value. If
the user confirms the command, it
returns true, and if they cancel, it re-
turns false. Simply store this boolean
value in a variable named run.

Power up CLI tools with natural language

Cargo. toml TOML

[dependencies]

anyhow = "1.0.99"

dialoguer = "0.12.0"

rig-core = "0.18.2"

tokio = { version = "1.47.1", features = ["full"] }

src/main.rs RUST

use dialoguer::Confirm;

src/main.rs RUST
#[tokio::main]
async fn main() -> Result<()> {
let prompt = format!("{real name} {real args}");
let run = Confirm::new()
.interact()?;

0k(())

30

RUNNING A COMMAND

You can specify a message to display
when asking the user for confirmation
using the with prompt() method,
which takes the message as a parame-
ter. You can use a variable named
prompt for this purpose.

The report () method allows you to
turn off the reporting of the chosen
option. We will do this because we dis-
play the prompt as a command with
arguments, and extra output would
make it cluttered.

Power up CLI tools with natural language

src/main.rs

#[tokio: :main]
async fn main() -> Result<()> {
let prompt = format!("{real name} {real args}");
let run = Confirm::new()
.with prompt(prompt)
.report(false)
.interact()?;

0k (())

RUST

31

RUNNING A COMMAND Run the command

Run the command

We now have a variable run that indi-

. src/main.rs RUST
cates we need to execute the received /

command. #[tokio::main]

async fn main() -> Result<()> {
Add an if block with this variable if run {
that will execute only if the user has }

confirmed the execution. O]

Power up CLI tools with natural language 32

RUNNING A COMMAND

The tokio crate provides the process
module, which allows you to run
various commands. It contains the
Command struct, responsible for build-
ing a command to execute and inter-
acting with it afterward.

Import this type and use the new()
method to create the command
you want to run. Pass the variable
real name as its name and store the
result in a mutable variable cmd, since
we will still configure arguments and
input-output for it.

Power up CLI tools with natural language

src/main.rs

use tokio::process::Command;

src/main.rs
#[tokio::main]
async fn main() -> Result<()> {
if run {
let mut cmd = Command::new(real name);

0k(())

RUST

RUST

33

RUNNING A COMMAND

In the past, we combined arguments
into a single sentence to create a nat-
ural language query. Now, we need to
do the opposite with the real args
variable returned by the model. This
String contains a list of arguments
that we need to pass to the command.

To split the string into arguments,
we can use the string method
split whitespace(), and then col-
lect everything into a Vec of string
references, where each element repre-
sents one argument.

However, this method of splitting the
string has a small drawback. If quotes
are used and the model provides com-
plex parameters with multiple words,
this case will not be handled correctly.
As an additional exercise, you can
think about and try to improve this
later.

Power up CLI tools with natural language

src/main.rs RUST

#[tokio: :main]
async fn main() -> Result<()> {
if run {
let mut cmd = Command::new(real name);
let args list: Vec<&str> = real args
.split whitespace()
.collect();

34

RUNNING A COMMAND

Now we can add these arguments
to the command using the args()
method. You need to provide a refer-
ence to the list of arguments as a
parameter. This list must be iterable,
and the method will automatically go
through all the arguments and add
them to the command.

Power up CLI tools with natural language

src/main.rs RUST
#[tokio: :main]
async fn main() -> Result<()> {
if run {
let mut cmd = Command::new(real name);
let args list: Vec<&str> = real _args
.split whitespace()
.collect();
cmd.args (&args_list);

Ok(())

35

RUNNING A COMMAND

To redirect the input and output
of the executed command to the I/
O used by our executable file at run-
time, we use the methods stdin(),
stdout(), and stderr() of the
Command struct.

You need to pass a handle of the stream
that will be used for reading or writing
data. In our case, we will simply in-
herit our standard input and output.
To do this, import the Stdio type
from the process module and call the
inherit () method, which will return
a handle to the current command in
the current execution context.

Power up CLI tools with natural language

src/main.rs RUST

use std::{
env,
path::Path,
process::Stdio,

src/main.rs RUST
#[tokio::main]
async fn main() -> Result<()> {
if run {
let mut cmd = Command::new(real name);
let args list: Vec<&str> = real args
.split whitespace()
.collect();
cmd.args(&args list);
cmd.stdin(Stdio::inherit());
cmd.stdout (Stdio::inherit());
cmd.stderr(Stdio::inherit())

’

36

RUNNING A COMMAND

Everything is now ready to run the
command. Since we don’t need to cap-
ture its output and only want to show
it to the user, we can simply execute
the command and wait for it to finish.
We can use the status () method for
this. It requires no parameters and
returns a Future. We use the await
operator to get the result.

The result we receive is the command’s
execution result. It includes the exit
code if the command succeeds, or an
error if the command fails. Note that
this error is not about the command’s
execution itself. The exit code already
indicates if the command was suc-
cessful or not. The result from the
status () method tells us whether the
command could not be started or if
the status code could not be retrieved.
This is separate from the command’s
execution result and is related to the
attempt to run it.

Power up CLI tools with natural language

src/main.rs
#[tokio: :main]
async fn main() -> Result<()> {
if run {
let mut cmd = Command::new(real name);
let args list: Vec<&str> = real _args

.split whitespace()

.collect();
cmd.args(&args_list);
cmd.stdin(Stdio: :inherit());
cmd.stdout(Stdio::inherit());
cmd.stderr(Stdio: :inherit());
let status = cmd.status().await?;

RUST

37

RUNNING A COMMAND

The status () method returns an in-
stance of the ExitStatus type. This
instance may not always contain an
exit code, but we can obtain it using
the code () method, which returns an
Option.

We expect to always get an exit code.
Therefore, we will use the context ()
method to turn an empty Option into
an error, indicating that the exit code
was not obtained.

Power up CLI tools with natural language

src/main.rs RUST
#[tokio: :main]
async fn main() -> Result<()> {
if run {
let mut cmd = Command::new(real name);
let args list: Vec<&str> = real args
.split whitespace()
.collect();
cmd.args(&args_list);
cmd.stdin(Stdio: :inherit());
cmd.stdout(Stdio::inherit());
cmd.stderr(Stdio: :inherit());
let status = cmd.status().await?;
let code = status
.code()
.context("Cannot get the exit code")?;

Ok(())

38

RUNNING A COMMAND

Let’s improve our command so that it
also returns an exit code. To do this,
we need to import the ExitCode type
from the standard process module
and return it as the result from the
main() function.

We should also return a success code at
the end of the command. There is an
associated constant SUCCESS with the
ExitCode type for this purpose.

Power up CLI tools with natural language

src/main.rs
use std::{
env,
path::Path,
process::{ExitCode, Stdio},

src/main.rs

#[tokio::main]
async fn main() -> Result<ExitCode> {
Ok (ExitCode: : SUCCESS)

RUST

RUST

39

RUNNING A COMMAND

Now we need to consider how to ob-
tain the result code from command
execution. In other words, how do
we convert the ExitStatus into an
ExitCode?

We have already converted the
ExitStatus to a code of type 132
However, an exit code can only be
created from a u8 type. Therefore, use
the try into method to try convert-
ing the returned code into the desired

type.

Power up CLI tools with natural language

src/main.rs
#[tokio: :main]
async fn main() -> Result<ExitCode> {
if run {
let mut cmd = Command::new(real name);
let args list: Vec<&str> = real args
.split whitespace()
.collect();
cmd.args(&args_list);
cmd.stdin(Stdio: :inherit());
cmd.stdout(Stdio::inherit());
cmd.stderr(Stdio: :inherit());
let status = cmd.status().await?;
let code: u8 = status
.code()
.context("Cannot get the exit code")?
.try into()?;
}
Ok (ExitCode: : SUCCESS)

RUST

40

RUNNING A COMMAND

Now we can construct the exit code
and return it as the result of the entire
program using return.

Power up CLI tools with natural language

src/main.rs
#[tokio: :main]
async fn main() -> Result<ExitCode> {
if run {
let mut cmd = Command::new(real name);
let args list: Vec<&str> = real args
.split whitespace()
.collect();
cmd.args(&args_list);
cmd.stdin(Stdio::inherit());
cmd.stdout(Stdio::inherit());
cmd.stderr(Stdio: :inherit());
let status = cmd.status().await?;
let code: u8 = status
.code()
.context("Cannot get the exit code")?
.try into()7?;
return Ok(ExitCode::from(code));
}
Ok (ExitCode: : SUCCESS)

RUST

41

RUNNING A COMMAND

A more elegant solution would be to
return the result of the command exe-
cution if it runs. Otherwise, return a
success exit code.

To do this, add an else branch to our
if statement, and in this alternative
branch, simply return a success result.
Remove the previous result that was
returned at the end of the main()
function.

Power up CLI tools with natural language

src/main.rs RUST

#[tokio::main]
async fn main() -> Result<ExitCode> {

src/main.rs RUST

#[tokio::main]
async fn main() -> Result<ExitCode> {

if run {
} else {
}
}
src/main.rs RUST

#[tokio::main]
async fn main() -> Result<ExitCode> {
if run {
} else {
Ok (ExitCode: : SUCCESS)

42

RUNNING A COMMAND

Since the main function now ends
with an if block that has two branches,
the primary and the alternative, the
return statement is no longer needed.
You can remove it.

Power up CLI tools with natural language

src/main.rs

#[tokio: :main]
async fn main() -> Result<ExitCode> {
if run {
let mut cmd = Command::new(real name);
let args list: Vec<&str> = real args
.split whitespace()
.collect();
cmd.args(&args_list);
cmd.stdin(Stdio: :inherit());
cmd.stdout(Stdio::inherit());
cmd.stderr(Stdio: :inherit());
let status = cmd.status().await?;
let code: u8 = status
.code()
.context("Cannot get the exit code")?
.try into()7?;
Ok (ExitCode::from(code))
} else {
}

RUST

43

TESTING THE AGENT

Testing the agent

Create a symbolic link

Our team is fully prepared for the
challenge. Build the release version of
the application using the build com-
mand with the - - release flag.

Then, copy the compiled binary to
a directory such as bin, which you
can access from your terminal. For
example, I use a directory named
~/.local/bin.

Also, create an alias in this folder, and
name it after the command you want
to run. This alias will help convert nat-
ural language arguments into formal
ones. In my case, the command is git,
so I name the alias git+.

Power up CLI tools with natural language

Create a symbolic link

SH
cargo build release

SH
cp target/release/add-plus ~/.local/bin/add-plus

SH

In -s ~/.local/bin/add-plus ~/.local/bin/git+

44

TESTING THE AGENT

Usage example

To create the OpenAl client, we
used environment variables. Before
running the command, you need
to set the environment variable
OPENAI_API_KEY with your OpenAl
API key.

Once this is done, you can execute the
command. In my case, I run it using
thealias git+, specifying thatit should
show a compact list of commits.

Remember to run this command from
a folder with a real git repository. As
a result, you’ll get a prompt to try
running the git command with the
necessary parameters to see this list,

like:

sh

git log --oneline

It’s convenient and effective.

Power up CLI tools with natural language

Usage example
SH
export OPENAI API KEY="<your key>"
SH
git+ show a compact list of commits
45

	Introduction
	Parsing inputs
	Prepare a crate
	Processing arguments

	Interacting with a model
	Creating a prompt
	Filling the prompt
	Interacting with a model

	Running a command
	Asking for confirmation
	Run the command

	Testing the agent
	Create a symbolic link
	Usage example

